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ABSTRACT 
 
We propose a methodology for discriminating between 
various types of normal and diseased brain tissue in medical 
images that utilizes Vector Quantization (VQ), an image 
compression technique, to extract discriminative texture 
features. Rather than focusing on images of the entire brain, 
we direct our attention to extracting local descriptors for 
individual regions of interest (ROIs) as determined by 
domain experts. After determining regions of interest, we 
generate a “locally optimal” codebook representing texture 
features of each region using the Generalized Lloyd 
Algorithm. We then utilize the codeword usage frequency of 
each codeword in the codebook as a discriminative feature 
vector for the region it represents. Finally, we compare k-
nearest neighbor, neural network, support vector machine, 
and decision tree-based classification approaches using the 
Histogram Model (HM) distance metric. Combined T1 and 
T2 classification accuracies in mice averaged 89% under 
certain experimental settings, indicating that our approach 
may assist radiologists and surgeons in determining disease 
margins and tissue homogeneity and support construction of 
brain atlases and pathology models. 
 

Index Terms— Texture descriptors, Vector 
quantization, Pattern analysis, Classification, Brain Images. 

 
1. INTRODUCTION 

 
It can often be difficult for clinicians to precisely assess the 
tissue composition of a lesion on the basis of radiographic 

appearance. Because this information is vital for determining 
accurate treatment and prognosis, such difficulty may 
necessitate more invasive examinations such as tissue 
biopsy, resulting in additional complications. Additionally, 
inability to determine tumor homogeneity may result in poor 
assessment of margins, possibly leading to incomplete 
resections and creating the potential for increased recurrence 
rates in patients with neoplasms of the brain or inadvertent 
excision of neighboring normal tissue. 

Recent advances in medical imaging and computer-aided 
diagnostic modalities have improved the accuracy with 
which radiologists and surgeons can determine margins and 
texture composition. Nevertheless, manually assessing 
textural homogeneity and precise tissue margins remains 
rather subjective. In previous work, we have analyzed 
approaches for tumor segmentation using fuzzy-
connectedness on entire images [1], keyblock-based 
classification of functional magnetic resonance activation 
patterns [2,3], and classification of brain images in 
Alzheimer’s patients using a novel dynamic recursive 
partitioning approach [4]. In this paper, we focus on 
classification of individual regions of interest in a dataset of 
23 post-T1 weighted gadolinium-enhanced Magnetic 
Resonance Imaging (MRI) slices and 83 pre-T2 weighted 
MRI slices of the brain of a single mouse, as shown in 
Figure 1. The mouse model used develops spontaneous CNS 
tumors due to the transgene, JC virus T-antigen, as described 
in [5].  Regions from MR images were extracted by domain 
experts and were supported by ground-truth histology data. 
In particular, we are interested in discriminating between 12 
T1 and 28 T2 manually segmented ROIs from these images, 
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representing various types of tissue: cerebrospinal fluid 
(CSF), gray matter, tissue necrosis, hippocampus tissue, and 
samples from three distinct regions of tumor with varying 
degrees of vascularization, neoplastic growth, and tissue 
necrosis. These ROIs are displayed in Figure 2. We wish to 
discriminate between individual tissue types as well as 
collectively classify tissue as normal (CSF, hippocampus, 
and gray matter classes) or abnormal (necrosis, tumor1, 
tumor2, tumor3). Among other applications, this research 
can be useful in determining disease properties and 
trajectories, such as tumor grade and stage, homogeneity of 
tissue, and composition of disease margins, all of which 
influence prognosis and treatment. 
 

 
(a)                   (b)                  (c)                 (d) 

Fig. 1: (a) Pre-T2 MR, (b) Post-T1 (gadolinium enhanced) 
MR, (c) hematoxylin and eosin histology, and (d) T-antigen 
histology images of a mouse with a large intracranial 
neoplasm. The dark area near the bottom of the image is 
necrosis. 
 

 
(a)                                         (b) 

Fig. 2: (a) Post-T1 and (b) Pre-T2 ROIs prior to 
combination and nomalization. In order from top left, (a) 2 
CSF ROIs, 3 Tumor1, 3 Tumor2, 3 Tumor3 and (b) 10 CSF, 
2 Graymatter, 8 Hippocampus, 8 Necrosis. 
 

2. BACKGROUND 
 
The VQ approach is based on applying the keyblock image 
encoding [6,7] on image data to obtain compressed images. 
The keyblock approach decomposes each image into equi-
size blocks and uses VQ to represent each block with the 
closest codeword from a codebook. First, given a fixed 
block size, each image is decomposed into a number of 
small blocks. Each small block contains features of the sub-
area of its corresponding image. Based on such small blocks 
from different images, a codebook containing keyblocks is 

generated. In order to generate the codebook, the 
Generalized Lloyd Algorithm (GLA), which produces a 
“local optimal” codebook based on the nearest neighbor and 
the centroid conditions, is used. The algorithm is as follows: 

 
Given a codebook Cm = {yi}, an improved codebook Cm+1 is 
generated by partitioning a training sequence T into cells Ri 
according to the Nearest Neighbor Condition: 

 
Ri={x : d(x,yi)  d(x,yj);   j i} 

 
where d(x,y) is the distortion between x and y and is 
computed via the Mean Squared Error. In other words, no 
two neighbors x and y may quantize to the same codeword if 
there exists a nearer neighbor of x that does not quantize to 
that codeword. The new codebook Cm+1 is then set to the 
centroids of the new cells: 
 

Cm+1={cent(Ri)} 
 
The algorithm then calculates the average distortion of Cm+1, 
denoted Dm+1, and stops if the fractional drop: 
 

(Dm – Dm+1) / Dm 
 

is below a user-defined threshold. Otherwise, the algorithm 
runs again. 

 
To summarize, GLA starts with an initial codebook and 

converges upon a local optimum by iteratively applying the 
two conditions until the average distortion drops below a 
given threshold. Once an optimal codebook has been 
generated, each image is encoded using the codebook. In 
this manner, GLA is very similar to the process of k-means 
clustering. Once the codebook is computed, each image is 
decomposed into blocks, then for each block, the closest 
entry in the codebook is located and the corresponding index 
is stored. In such a way, each image is represented as a 
vector of frequencies of keyblock (codeword) appearance. 

The Visual Vocabulary, or ViVo, approach [8] is an 
alternative procedure with several similarities to the 
keyblock approach. The general idea, as in the keyblock 
approach, is to decompose ROIs into a series of equally-
sized blocks (or “tiles”). However, rather than using a 
codebook, the keyblock approach uses feature extraction 
techniques such as PCA or ICA to obtain ROI texture 
descriptors. 

 
3. METHODOLOGY 

 
Our classification approach is based on the same keyblock 
image encoding used in Vector Quantization [6] and 
described above. It is worth noting that we only use a single 
codebook for the entire dataset, rather than one codebook 
per class, in order to make our approach more general by 
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modeling the conditions that such an analysis would be 
performed under on an entire image. Additionally, using 
different codebooks would introduce additional challenges: 
the codeword frequencies would no longer be useful 
features, since they would come from different codebooks. 
In this case, the codeword contents would need to be 
factored in with the frequencies. While we use only one 
codebook to analyze all ROIs, we generate a different one 
on each fold to ensure that the test data does not influence 
the trained codebook. 

 We apply the keyblock approach on each ROI to 
identify discriminative texture features within each region, 
optionally cropping or imputing the ROI with its mean to 
match the dimensions of other ROIs in the dataset. 
Normalization of ROIs may also be performed. Following 
data preprocessing, the keyword frequency vector is used as 
a representative feature vector of the image texture in 
classification. We do not perform the final step of vector 
quantization (substituting the codewords into the image to 
reconstruct a compressed image), as this is not necessary to 
capture texture information. We then employ the Histogram 
Model, which has been shown effective for texture 
classification in the literature [7], as a similarity measure in 
k-nearest neighbor classification, which determines the class 
of an ROI by a majority vote of its k nearest neighbors for a 
user-specified k. We additionally perform classification 
experiments directly on the feature vectors using the C4.5 
decision tree learning algorithm, a support vector machine 
with a polynomial kernel (of degree 2), and a neural network 
with two hidden layers and a sigmoid transfer function for 
comparison. To accommodate the requirement of binary 
classification for a support vector machine, we split the 
original multi-class classification problem into binary one-
vs-rest classification problems to ascertain SVM accuracy. 
 

4. RESULTS 
 
We performed leave-one-out classification experiments on a 
combined dataset of 12 post-T1 weighted (gadolinium 
enhanced) ROIs and 28 pre-T2 weighted ROIs extracted 
from 21 post-T1 and 83 pre-T2 slices of the brain of a single 
mouse afflicted with a large intracranial neoplasm. Images 
were registered prior to segmentation and normalized 
following combination. Segmentation itself was performed 
by domain experts and supported by histology data. A 
codebook was generated from the training data for each fold 
in the leave-one-out procedure; the test item was never 
included in codebook generation to ensure that the learned 
patterns were not influenced by the test item. The post-T1 
ROIs were assigned labels “CSF”, “Tumor1”, “Tumor2”, 
and “Tumor3”, representing areas of cerebrospinal fluid, 
homogenous “typical” tumor tissue, heavily vascularized 
tumor tissue, and tumor tissue near an area of necrosis and 
edema. The tumor regions were clearly demarcated in the 
post-T1 images because gadolinium is highly sensitive to 

disruption of the blood-brain barrier, such as that which 
typically occurs in tumors. To take advantage of the imaging 
properties of T2 relaxation, we selected ROIs from the T2 
image dataset in the following classes: “CSF”, “Graymatter”, 
“Hippocampus”, and “Necrosis”. These labels corresponded 
to areas of cerebrospinal fluid, normal gray matter tissue, a 
region of normal tissue located in the hippocampus, and a 
region of liquefactive necrosis near the lower central region 
of the tumor, respectively. 

Results varied slightly over runs due to the locally 
optimal nature of GLA and the use of different starting 
conditions for codebook generation. Average kNN 
accuracies on the combined and individual datasets for 
values of k ranging from 1 to 6 are shown in the following 
table. In general, average results on the T1 dataset were 
lower than those of the combined dataset and fell off swiftly 
with increases in k, suggesting issues due to the small sample 
size, while average results on the T2 dataset were higher, 
suggesting that the T2 images may exhibit more consistent 
textural features, as they were taken primarily of normal 
tissue. The disparity between T1 and T2 results may also be 
due partially to the relative sizes of each dataset. It is also 
likely that normal regions of the brain (as were imaged in all 
classes of the T2 dataset except necrosis) exhibit greater 
textural homogeneity than regions of neoplastic tissue (as 
were imaged in all T1 classes except CSF), resulting in 
higher texture-based classification accuracy. Another 
possibility is that the relative dimensions of each T2 ROI 
influenced classification; however, neither cropping nor 
imputing missing values to obtain a uniform image size 
produced significantly different accuracies. 

 
 

k T1 + T2 T1 T2 
1 89.19% 81.82% 96.15% 
2 86.49% 63.64% 96.15% 
3 62.16% 45.45% 84.62% 
4 62.16% 36.36% 84.62% 
5 72.97% 36.36% 80.77% 
6 72.97% 18.18% 88.46% 

Table 1: Average kNN classification accuracies for the T1, 
T2, and combined datasets. 

 
 
In addition to computing class accuracies, we grouped 
classes into normal (CSF, Hippocampus, Gray Matter) and 
abnormal (Tumor1, Tumor2, Tumor3, Necrosis) categories 
and computed an ROC curve with an area of .8235, which is 
shown in Figure 3. We also classified ROIs using SVMs 
(polynomial kernel of degree 2, c=3), neural networks 
(sigmoid transfer function, 2 hidden layers, (out + in) / 2 
hidden nodes), and C4.5 decision trees. These results are 
shown in Table 2. 
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Fig. 3: An ROC curve plotting true positive rate against 

false positive rate on the combined T1 + T2 dataset. 
 
 
Modality kNN SVM Neural Net C4.5 
T1 + T2 89.19% 67.57% 86.49% 59.46% 

T1 81.82% 72.73% 63.64% 9.09% 
T2 96.15% 92.31% 96.15% 88.46% 

Table 2: Best results of various classifiers. 
 

Somewhat surprisingly, kNN achieved the best performance 
of all classifiers tested despite its relative simplicity. Also 
interestingly, SVMs performed fairly well on the individual 
datasets but produced poorer results when the datasets were 
combined, suggesting that two distinct hyperplanes must be 
learned for the two datasets. This may be possible to 
accomplish using a higher-dimensional kernel. As expected, 
a decision-tree approach performed poorly in this 
application, as the texture patterns distinguishing tissue type 
are unlikely to be separable by a rigid decision boundary. 

 
5. CONCLUSION 

 
Our methodology has the potential to assist in detection of 
tissue margins and determination of tissue composition 
through textural homogeneity, thus improving our 
understanding of brain structure and pathology and 
increasing the accuracy of diagnosis and staging. We 
demonstrate our methodology on 3 types of normal tissue 
and 4 types of abnormal tissue segmented from a mouse with 
a large intracranial neoplasm, obtaining average accuracies 
up to 89% on a combined T1 and T2-weighted dataset. 
 
Opportunities for future work include utilizing two-step 
wavelet analysis in our approach, automatically segmenting 
ROIs using fuzzy segmentation techniques, integrating our 

methodology with brain image databases that we have 
previously developed, performing the same experiments on 
slices extracted from a larger number of mice or humans, 
including those with diverse tumor types, and applying these 
techniques more broadly to other medical imaging domains. 
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